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The shear-rate dependence of the intrinsic viscosity of the bead-and-spring (or Rouse) model for polymer 
chains with rigorous inclusion of hydrodynamic interaction (HI) and excluded volume (EV) is studied, for 
chains of varying length, using the Brownian dynamics simulation technique. The simulation results describe 
a transition from the zero-shear-rate viscosity, which depends strongly on HI and EV, to the region of 
very high shear rate, where the simulated viscosity is found to be that corresponding to the absence of HI 
and EV. As the latter is larger than the former when the chain is long enough, a shear-thickening behaviour 
is predicted for long bead-and-spring chains. The dumbbell model, which is the shortest chain, gives the 
wrong, opposite, prediction. 
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INTRODUCTION 

One of the simplest types of systems exhibiting 
non-Newtonian behaviour is that of dilute polymer 
solutions L2. As is well known, the addition of a small 
amount of polymer to a simple liquid (solvent) causes a 
remarkable increase in the shear viscosity, which is found 
to decrease with increasing shear rate. Although this 
shear-thinning behaviour has been known for many 
years, there have been few theoretical advances towards 
a complete molecular description of it. The zero-shear- 
rate viscosity of dilute solutions is adequately described 
by the bead-and-spring model (Rouse chain 3) when 
hydrodynamic interactions (HI) and excluded-volume 
(EV) effects are properly considered. Recent Monte Carlo 
and Brownian dynamic simulations 4'5 have proved that 
the observed molecular-weight dependence of the 
intrinsic viscosity of polymers, and the universal 
parameters combining the intrinsic viscosity with 
polymer dimensions, are well described (both in theta 
solvents and in good solvents) by bead-and-spring chains. 

As described by Bird et al. ~, when hydrodynamic 
interactions are neglected and excluded-volume effects 
are not considered, the bead-and-spring model predicts 
a Newtonain viscosity, independent of shear rate. This 
deficiency prompted the development of models that 
may be more realistic, such as those having finite 
extensibility 6'7. The refinements introduced in such 
models make it impossible to consider at the same time 
HI and EV effects. Even chain length is sometimes a 
complicating factor, and therefore in many cases the 
theoretical description has been restricted to the case of 
dumbbells, having just two beads and one spring. 
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Hydrodynamic-interaction and excluded-volume effects 
may have an important influence on the non-Newtonian 
behaviour. It is interesting to include these effects in the 
study of the behaviour of the simplest model, the Rouse 
chain, thereby isolating their influence from other aspects 
such as finite extensibility and non-linearity in general. 
This has recently been accomplished for the shortest 
Rouse chain, the Hookean dumbbell, using Brownian 
dynamics simulation techniques 8'9. The results were 
slightly different from those of other theoretical 
treatments including HI in an approximate way, but all 
the theories and treatments T M  agreed qualitatively in 
that the intrinsic viscosity decreased with increasing shear 
rate, showing the typical non-Newtonian shear thinning. 

It is evident that the dumbbell model is an 
oversimplification of a polymer chain. Assuming that a 
long bead-and-spring chain could be a more realistic 
model, we undertook the Brownian dynamics simulation 
of the chain conformation in shear flow with 
hydrodynamic interaction 12. We found the striking fact 
that hydrodynamic-interaction effects in chains with a 
large number of beads, N, are in the opposite direction 
to those for the dumbbell. Thus, while for the latter (with 
N = 2), HI causes an increase in dimensions that may be 
up to 20% over the no-HI value, in the case of large N 
the chain dimensions with HI may typically be 50% 
smaller. It was concluded that the dumbbell model may 
be misleading, particularly in regard to the influence of 
HI effects. 

In the present paper we extend the simulation of 
moderately long bead-and-spring chains to the calcula- 
tion of the viscosity as a function of shear rate, including 
both HI and EV effects. The simulations are carried out 
for varying chain length, so that the long-chain limiting 
behaviour can be estimated. 
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M O D E L  AND M E T H O D S  

The bead-and-spring model is composed of N spherical 
beads, with hydrodynamic radius a, joined by N - 1  
Hookean springs, having a Gaussian distribution of 
lengths with zero mean and a root-mean-square value 
denoted as b, which for convenience is taken as the unit 
of length. When HI is neglected, the results can be 
expressed in a form that is independent of the choice of 
tr. However, the strength of HI effects depend on the 
so-called HI parameter 13, for which a reasonable value 
is h*=0.25,  corresponding to a/b=0.257.  HI is 
represented rigorously by means of Rotne-Prager-  
Yamakawa interaction tensors. 

As an adequate continuous representation of excluded- 
volume effects, we used a Lennard-Jones potential for 
the distance rlj between any pair of beads, i and j: 

V = 4e[(a/rq) 6 - (a/rij) 12 3 (1) 

This potential has been shown to reproduce correctly the 
molecular-weight dependence of polymer dimensions and 
hydrodynamic properties when the parameters are taken 
as a/b=0.8  and e/kaT=O.15'x4'xS. 

The Brownian dynamics of a chain of N beads in a 
simple shear flow with shear rate ~ is simulated with HI 
as described in previous papers 8'12. The only modification 
in the methodology here is the use, instead of the 
first-order algorithm of Ermak and McCammon 16, of 
the second-order procedure proposed by Iniesta and 
Garcia de la Torre iv. Of course, intramolecular EV 
forces derived from equation (1) have to be added to the 
mechanical spring forces. While the time step, At, can be 
fairly large 8'12 in the simulations without EV, the strong 
dependence of the EV potential on rij requires the use of 
a much smaller At to assure practical constancy of 
the forces along the simulation step. This in turn required 
a very large number of steps in the trajectory to achieve 
a reasonable duration, as required to scan sufficiently the 
conformational variability. The values taken for the 
number of steps and their length will be specified later on. 

The initial state of the polymer chain in the simulation 
was a conformation of the chain generated in the absence 
of flow. Then, the simulation with a given shear rate was 
started. During the first part of the trajectory the chain 
had to adopt the state corresponding to the shear flow. 
As we are interested in the steady-state properties, we 
have to reject that part of the trajectory in the statistical 
analysis (vide supra). 

The intrinsic viscosity is calculated from the simulated 
trajectories in flows with shear rate ~ using the Kramers 
expression for the cross-component of the stress tensor, 
"Cxy 

rl = - zxy/~ = no + n(Q=Fy)/~, (2) 

where n is the number density of polymer molcules, qo 
is the viscosity of the solvent and q is that of the polymer 
solution. Q~ and Fi are respectively the elongation and 
the force at the ith spring. It is convenient to use the 
following dimensionless form for the intrinsic viscosity 

[q]* = [r l]NA/mb 3 

=(1/nb3)(rl--qo)/rlo ( n ~ O )  (3) 

We note that this definition differs slightly from that used, 
with the same symbol, in ref. 8, but is the same as that 
employed in our Monte Carlo studies 4'5'x5. 

In Brownian dynamics simulation work, a dimension- 
less time is conveniently defined as: 

t* = t /(6nqoab2/knT) (4) 

Then a natural way of formulating the reduced shear rate 
is: 

i* = ( 6nqoab2 /kB T )i (5) 

However, in rheological studies of dilute polymer 
solutions it is customary to express the reduced shear 
rate as: 

fl - (Mrl o [rl]/N Ak B T)~ 
= ([r/]*/6na*)~* (6) 

with a* = a/b. 
From the instantaneous conformations generated in 

the Brownian trajectory, we evaluated in some cases the 
mean-square radius of gyration (s2). 

The zero-shear-rate intrinsic viscosity can be obtained 
alternatively from Monte Carlo simulations based on 
the rigid-body treatment, whose details are given 
elsewhere 4'x4. These Monte Carlo values are used 
essentially to check Brownian dynamics results. 

RESULTS 

The choice of the number of steps n s and step length At* 
presents a compromise between the validity of the 
simulation conditions and the computer time consumed. 
The inclusion of EV requires the use of smaller At*, so 
that the ns needed to achieve a given trajectory length, 
t* = n s At*, increases remarkably. 

In the simulations without EV, we used At* =0.01. In 
our previous paper we showed that this choice is adequate 
to reproduce the chain statistics in shear flows. The 
number of steps was 800 000 for all values of N. When 
EV is included, we had to decrease the time step, down 
to At*=0.0005. It is important to ascertain whether 
the resulting trajectories were long enough to achieve 
convergence in the results. This is illustrated in Figure I 
for the worst case (N = 20, with HI and EV). We see that 
the results are not stable until a certain trajectory length 
has been simulated. The first part of the trajectory is 
spent going from the starting conformation of the chain 
to the steady-state chain statistics corresponding to the 
i* considered. We monitored all the simulations as 
illustrated in Figure I, and discarded the first part of the 
trajectory. The other part, in which the result is stable, 
was subdivided into five trajectories, for which averages 
were calculated. The final result is the mean of the five 
values, and their standard deviation gives an estimate of 
the statistical uncertainty. 

It is important to ascertain whether the time step At 
is small enough. This can be tested by running 
simulations in which At is further decreased. If the 
previous At was adequate, the results in the new run 
should not differ appreciably from those of the previous 
one. We have carried out this test again in the worst case 
(N=20,  with EV and HI), decreasing At* down to 
0.00025. In the comparison, the trajectory length 
t* = n At*, where n is the number of steps, should be the 
same, and this required doubling n. The results are 
presented in Figure 1, where we note that the difference 
between the two sets of results is, in the long term, smaller 
than 10%. A similar test carried out for N =  12 gave, as 
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Moving-average results for the viscosity at "~* = 1 for N = 20 
with excluded volume and hydrodynamic interaction, plotted versus 
the trajectory length t*. Results for At* =0.00025 and At* =0.0005 are 
presented 

Table 1 Intrinsic viscosity of bead-and-spring chains without HI and 
EV 

Theoretical Brownian dynamics simulation 

N Equation (7) 9 *=0 9" =0.5 9" = 1 9" = 5 

2 0.083 0.088 0.09 0.093 0.086 
3 0.222 0.227 0.230 0.230 0.236 
5 0.67 0.68 0.70 0.70 0.69 
8 1.75 1.78 1.94 1.96 1.69 

12 3.97 3.93 4.05 4.10 4.08 
20 11.1 10.9 10.5 10.5 10.6 

expected, a much smaller deviation. Thus, we will 
consider that At* =0.0005 is adequate for simulations 
with EV. 

The simulation results can be tested extensively by 
comparison with theoretical results in the case of the 
absence of HI  and EV. In Table 1 we list the Newtonian 
intrinsic viscosity calculated from the equation of Bird 
et al. ~ : 

[q]* = (N 2 - 1)/36 (7) 

along with simulation results obtained for different values 
of ~*. The statistical errors of the latter, estimated as 
described above, were of the order of a few per cent. 

We note in Table 1 that the simulation results are 
acceptably independent of 9* and coincide within 
statistical uncertainty with the theoretical values. This 
agreement instils confidence in the validity of the 
simulation procedure and working conditions. 

Another check on the performance of the simulation 
can be carried out by comprison of zero-shear-rate 
simulation results with results from Monte  Carlo 
simulation 4'5'14. This is done in Table 2 for the complex 
situation (i.e. with HI  and EV). The Brownian dynamics 
results for (s2)  are in excellent agreement with the Monte 
Carlo results. Although this situation does not depend 
on HI,  it is anyhow a proof  that the trajectories were 
long enough to scan the conformational space and 
indicates that no unphysical divergences took place. The 
Monte Carlo and Brownian dynamics results for [r/]a 

with HI  and EV are also found to be in good agreement 
within statistical uncertainties. 

The shear-rate dependence of the viscosity can be 
analysed, as usual with experimental data, in terms of 
the relative form of the shear rate fl, in which it is 
combined, as expressed in equation (6), with some 
relaxation rate of the polymer chain determined by the 
intrinsic viscosity. Thus the r/vs. fl curves for polymers 
of different molecular weights could be the same, at least 
in the region where the non-Newtonian behaviour begins 
to take place. 

Our Brownian dynamics (BD) simulation results 
without EV are plotted vs. fl in Figure 2. As discussed 
'above, the results for very small fl agree well with the 
Monte Carlo values for zero shear rate. This is one of 
the limits indicated in Figure 2. The other limit is that 
for very high shear rate. In such a situation the springs 
in the chain are very stretched, the distances between 
beads are very large and therefore HI  is negligible and 
the viscosity takes the no-HI  values (equation (7)). The 
BD results describe well the transition between the two 
limits. For  the dumbbell with N = 2, the results indicate 
a shear-thinning behaviour, which is indeed the real 
situation for dilute polymer solutions. For  N = 5  the 
separation between the two limits is very small, with a 
very weak shear-rate dependence, and for N = 2 0  the 
limits have been inverted and the bead-and-spring chain 
has a shear-thickening behaviour, except for a minor 
minimum. The reason for this change is clear from the 
chain-length dependence of the viscosity in the two limits. 
At 9*=0 ,  we have [~/]o(no EV, Hl )ocN° '5 ;  while for 
N ~ m ,  as commented above, the limit is [r/]oo(nO 
HI)  oc N. At small N, It/] o may be larger than It/] ~; but 
when N is large enough (as seen for N = 20), [q]oo > [r/]o. 
For  infinite N the upper limit is infinitely higher than 
the lower one, and a monotonic increase is expected. This 
behaviour for chains of infinite length has indeed been 
predicted in a very recent renormalization-group 
calculation 18. 

The trend shown by the results with EV, displayed in 
Figure 3, is similar. In the presence of EV, the fl--* 
limit is the same as in its absence, for the EV effect 
disappears as intrachain dimensions are expanded due 
to the shear. Now, according to the mean-field theory 19, 
confirmed by Monte Carlo calculations, [q]o(EV, HI)oc 
N °8, which is larger for small N than the no-EV results. 
Thus, the shear-thinning behaviour for short chains is 

Table 2 Radius of gyration (s 2) and zero-shear-rate intrinsic viscosity 
[r/I* of bead-and-spring chains: Monte Carlo (MC) and Brownian 
dynamics (BD) simulations 

(sa> D]* 

N MC, EV BD, EV, HI MC, HI, MC, HI, BD, HI, 
no EV EV EV" 

2 0.249 0.246 0.118 0.117 0.123 
3 0.486 0.484 0.283 0.368 0.41 
5 0.97 0.99 0.74 0.87 0.83 
8 1.75 1.70 1.63 2.11 2.91 

12 2.85 2.72 3.20 4.56 4.71 
20 5.27 5.32 7.22 11.3 10.4 

"Calculated for 9*=0.3 when N=2, 3, 5, 8 and 12 or 9"=0.1 when 
N = 20 
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Figure 2 Reduced intrinsic viscosity [~/]* versus relative shear rate fl 
for bead-and-spring chains without excluded volume. The broken and 
chain lines are the limits for ~ = 0 (Monte Carlo) and ~-~ go (without 
hydrodynamic interaction). The dots for N=2 ,  5 and 20 are the 
Brownian dynamics simulation data. The theoretical prediction of ref. 
18 for N---, go is also presented 
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The same as in Figure 2 for the case with excluded volume 

more noticeable (see results for N = 5) than when EV is 
not considered. For N=20, the two limits have 
approximately the same height, but we obtain an 
interesting shear-rate dependence in the form of a deep 
minimum. As the exponent for [~/]o is again smaller than 
unity, for the same reason as in the no-HI case the 
viscosity must increase with shear rate for long chains. 
This is indeed the finding in the renormalization-group 
calculation, which is also included in Figure 3, showing 
at intermediate fl a shallow minimum, which could have 
the same origin as those exhibited by the simulation 
results for short chains. 

CONCLUSIONS 

It has been known for many years that the bead-and- 
spring model without hydrodynamic interaction or with 
preaveraged interaction predict a Newtonian, shear- 
independent behaviour of the viscosity. In previous 
works 8'9, Brownian dynamics simulation studies for the 
shortest chain, the dumbbell (N= 2), indicated that the 
rigorous inclusion of hydrodynamic interaction resulted 
in a non-Newtonian, shear-thinning behaviour reminiscent 
of that found experimentally for polymer solutions. We 
have now extended the simulations to larger chains, up 
to N = 20, finding that hydrodynamic interaction actually 
leads to a shear-thickening prediction. This behaviour, 
which is contrary to experimental observations, is 
explained by the disappearance of interaction effects 
when the chain is indefinitely stretched at very high shear 
rates, with an intrinsic viscosity proportional to N, when 
the zero shear rate scales as N °s. At the cost of more 
computational effort and more uncertainty in the results, 
we have included excluded-volume effects in our 
simulations. Although the excluded volume may change 
the aspect of the shear-rate dependence for discrete N, 
even causing a more or less deep minimum, the prediction 
for very long chains is that the viscosity increases at high 
shear rates. Scaling arguments again confirm the 
situation. 

Thus, other features additional to hydrodynamic 
interaction and excluded volume should be included in 
the model polymer chain. As demonstrated here and 
elsewhere 8,12, the conclusions about the influence of some 
particular effect obtained for a dumbbell may be 
misleading. Therefore, studies on more refined models 
should concern long chains, and Brownian dynamics 
simulations can be a very useful tool to examine the 
influence of such features in chains of varying length. 
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